advent-of-code/2016-python2/output/__init__.py

76 lines
1.6 KiB
Python

import functools
import re
# Directions/Adjacents for 2D matrices, in the order UP, RIGHT, DOWN, LEFT
D = [
(-1, 0),
(0, 1),
(1, 0),
(0, -1),
]
# Directions for 2D matrices, as a dict with keys U, R, D, L
DD = {
"U": (-1, 0),
"R": (0, 1),
"D": (1, 0),
"L": (0, -1),
}
# Adjacent relative positions including diagonals for 2D matrices, in the order NW, N, NE, W, E, SW, S, SE
ADJ = [
(-1, -1),
(-1, 0),
(1, -1),
(0, -1),
(0, 1),
(1, 1),
(1, 0),
(1, -1),
]
def ints(s):
"""Extract all integers from a string"""
return [int(n) for n in re.findall(r"\d+", s)]
def mhd(a, b):
"""Calculates the Manhattan distance between 2 positions in the format (y, x) or (x, y)"""
ar, ac = a
br, bc = b
return abs(ar - br) + abs(ac - bc)
def matrix(d):
"""Transform a string into an iterable matrix. Returns the matrix, row count and col count"""
m = [tuple(r) for r in d.split()]
return m, len(m), len(m[0])
def mdbg(m):
"""Print-debug a matrix"""
for r in m:
print("".join(r))
def vdbg(seen, h, w):
"""Print-debug visited positions of a matrix"""
for r in range(h):
print("".join(["#" if (r, c) in seen else "." for c in range(w)]))
def bfs(S, E=None):
"""BFS algorithm, equal weighted nodes"""
seen = set()
q = [(S, 0)]
g = {} # graph, required to be provided at some point
while q:
m, w = q.pop(0)
if m in seen:
continue
seen.add(m)
# investigate here
for s in g[m]:
q.append((s, w + 1))
# return insights