import re from collections import Counter, defaultdict, deque from heapq import heappop, heappush from itertools import chain, combinations, compress, permutations from output import ADJ, DD, D, ints, matrix, mdbg, mhd, vdbg def solve(data): grid, H, W = matrix(data) dests = { v: (y, x) for y, r in enumerate(grid) for x, v in enumerate(r) if v.isdigit() } S0 = dests["0"] del dests["0"] p1 = travel(dests, grid, H, W, S0) p2 = travel(dests, grid, H, W, S0, goback=True) return p1, p2 def travel(dests, grid, H, W, S0, goback=False): shortest = float("inf") for goals in permutations(dests.items()): goals = list(goals) if goback: goals += [("0", S0)] t = 0 S = S0 for _, E in goals: seen = set() q = [(S, 0)] while q: pos, w = q.pop(0) if pos == E: t += w break if pos in seen: continue seen.add(pos) y, x = pos for dy, dx in D: if not (0 <= dy + y < H and 0 <= dx + x < W): continue if grid[dy + y][dx + x] != "#": q.append(((dy + y, dx + x), w + 1)) S = E shortest = min(shortest, t) return shortest if __name__ == "__main__": # use dummy data inp = """ ########### #0.1.....2# #.#######.# #4.......3# ########### """.strip() # uncomment to instead use stdin # import sys; inp = sys.stdin.read().strip() # uncomment to use AoC provided puzzle input with open("./input/24.txt", "r") as f: inp = f.read().strip() # uncomment to do initial data processing shared by part 1-2 p1, p2 = solve(inp) print(p1) print(p2) # uncomment and replace 0 with actual output to refactor code # and ensure nonbreaking changes # assert p1 == 0 # assert p2 == 0